In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Label noise is ubiquitous in various machine learning scenarios such as self-labeling with model predictions and erroneous data annotation. Many existing approaches are based on heuristics such as sample losses, which might not be flexible enough to achieve optimal solutions. Meta learning based methods address this issue by learning a data selection function, but can be hard to optimize. In light of these pros and cons, we propose Selection-Enhanced Noisy label Training (SENT) that does not rely on meta learning while having the flexibility of being data-driven. SENT transfers the noise distribution to a clean set and trains a model to distinguish noisy labels from clean ones using model-based features. Empirically, on a wide range of tasks including text classification and speech recognition, SENT improves performance over strong baselines under the settings of self-training and label corruption.
translated by 谷歌翻译
Adding perturbations via utilizing auxiliary gradient information or discarding existing details of the benign images are two common approaches for generating adversarial examples. Though visual imperceptibility is the desired property of adversarial examples, conventional adversarial attacks still generate traceable adversarial perturbations. In this paper, we introduce a novel Adversarial Attack via Invertible Neural Networks (AdvINN) method to produce robust and imperceptible adversarial examples. Specifically, AdvINN fully takes advantage of the information preservation property of Invertible Neural Networks and thereby generates adversarial examples by simultaneously adding class-specific semantic information of the target class and dropping discriminant information of the original class. Extensive experiments on CIFAR-10, CIFAR-100, and ImageNet-1K demonstrate that the proposed AdvINN method can produce less imperceptible adversarial images than the state-of-the-art methods and AdvINN yields more robust adversarial examples with high confidence compared to other adversarial attacks.
translated by 谷歌翻译
Incremental text-to-speech, also known as streaming TTS, has been increasingly applied to online speech applications that require ultra-low response latency to provide an optimal user experience. However, most of the existing speech synthesis pipelines deployed on GPU are still non-incremental, which uncovers limitations in high-concurrency scenarios, especially when the pipeline is built with end-to-end neural network models. To address this issue, we present a highly efficient approach to perform real-time incremental TTS on GPUs with Instant Request Pooling and Module-wise Dynamic Batching. Experimental results demonstrate that the proposed method is capable of producing high-quality speech with a first-chunk latency lower than 80ms under 100 QPS on a single NVIDIA A10 GPU and significantly outperforms the non-incremental twin in both concurrency and latency. Our work reveals the effectiveness of high-performance incremental TTS on GPUs.
translated by 谷歌翻译
High order structures (cavities and cliques) of the gene network of influenza A virus reveal tight associations among viruses during evolution and are key signals that indicate viral cross-species infection and cause pandemics. As indicators for sensing the dynamic changes of viral genes, these higher order structures have been the focus of attention in the field of virology. However, the size of the viral gene network is usually huge, and searching these structures in the networks introduces unacceptable delay. To mitigate this issue, in this paper, we propose a simple-yet-effective model named HyperSearch based on deep learning to search cavities in a computable complex network for influenza virus genetics. Extensive experiments conducted on a public influenza virus dataset demonstrate the effectiveness of HyperSearch over other advanced deep-learning methods without any elaborated model crafting. Moreover, HyperSearch can finish the search works in minutes while 0-1 programming takes days. Since the proposed method is simple and easy to be transferred to other complex networks, HyperSearch has the potential to facilitate the monitoring of dynamic changes in viral genes and help humans keep up with the pace of virus mutations.
translated by 谷歌翻译
Binaural rendering of ambisonic signals is of broad interest to virtual reality and immersive media. Conventional methods often require manually measured Head-Related Transfer Functions (HRTFs). To address this issue, we collect a paired ambisonic-binaural dataset and propose a deep learning framework in an end-to-end manner. Experimental results show that neural networks outperform the conventional method in objective metrics and achieve comparable subjective metrics. To validate the proposed framework, we experimentally explore different settings of the input features, model structures, output features, and loss functions. Our proposed system achieves an SDR of 7.32 and MOSs of 3.83, 3.58, 3.87, 3.58 in quality, timbre, localization, and immersion dimensions.
translated by 谷歌翻译
尽管深入学习算法已被深入开发用于计算机辅助结核病诊断(CTD),但它们主要依赖于精心注释的数据集,从而导致了大量时间和资源消耗。弱监督的学习(WSL)利用粗粒标签来完成精细的任务,具有解决此问题的潜力。在本文中,我们首先提出了一个新的大规模结核病(TB)胸部X射线数据集,即结核病胸部X射线属性数据集(TBX-ATT),然后建立一个属性辅助的弱点监督的框架来分类并通过利用属性信息来克服WSL方案中的监督不足来定位结核病。具体而言,首先,TBX-ATT数据集包含2000个X射线图像,其中具有七种用于TB关系推理的属性,这些属性由经验丰富的放射科医生注释。它还包括带有11200 X射线图像的公共TBX11K数据集,以促进弱监督检测。其次,我们利用一个多尺度特征交互模型,用于TB区域分类和属性关系推理检测。在TBX-ATT数据集上评估了所提出的模型,并将作为未来研究的稳固基准。代码和数据将在https://github.com/gangmingzhao/tb-attribute-weak-localization上获得。
translated by 谷歌翻译
通过仅使用训练有素的分类器,模型内(MI)攻击可以恢复用于训练分类器的数据,从而导致培训数据的隐私泄漏。为了防止MI攻击,先前的工作利用单方面依赖优化策略,即,在培训分类器期间,最大程度地减少了输入(即功能)和输出(即标签)之间的依赖关系。但是,这样的最小化过程与最小化监督损失相冲突,该损失旨在最大程度地提高输入和输出之间的依赖关系,从而在模型鲁棒性针对MI攻击和模型实用程序上对分类任务进行明确的权衡。在本文中,我们旨在最大程度地减少潜在表示和输入之间的依赖性,同时最大化潜在表示和输出之间的依赖关系,称为双边依赖性优化(BIDO)策略。特别是,除了对深神经网络的常用损失(例如,跨渗透性)外,我们还将依赖性约束用作普遍适用的正常化程序,可以根据不同的任务将其实例化使用适当的依赖标准。为了验证我们策略的功效,我们通过使用两种不同的依赖性度量提出了两种BIDO的实施:具有约束协方差的Bido(Bido-Coco)(Bido-Coco)和Bido具有Hilbert-Schmidt独立标准(Bido-HSIC)。实验表明,比多(Bido防御MI攻击的道路。
translated by 谷歌翻译
在本文中,我们提出了PETRV2,这是来自多视图图像的3D感知统一框架。基于PETR,PETRV2探讨了时间建模的有效性,该时间建模利用先前帧的时间信息来增强3D对象检测。更具体地说,我们扩展了PETR中的3D位置嵌入(3D PE)进行时间建模。 3D PE可以在不同帧的对象位置上实现时间对齐。进一步引入了特征引导的位置编码器,以提高3D PE的数据适应性。为了支持高质量的BEV分割,PETRV2通过添加一组分割查询提供了简单而有效的解决方案。每个分割查询负责分割BEV映射的一个特定补丁。 PETRV2在3D对象检测和BEV细分方面实现了最先进的性能。在PETR框架上还进行了详细的鲁棒性分析。我们希望PETRV2可以作为3D感知的强大基准。代码可在\ url {https://github.com/megvii-research/petr}中获得。
translated by 谷歌翻译
深度完成旨在预测从深度传感器(例如Lidars)中捕获的极稀疏图的密集像素深度。它在各种应用中起着至关重要的作用,例如自动驾驶,3D重建,增强现实和机器人导航。基于深度学习的解决方案已经证明了这项任务的最新成功。在本文中,我们首次提供了全面的文献综述,可帮助读者更好地掌握研究趋势并清楚地了解当前的进步。我们通过通过对现有方法进行分类的新型分类法提出建议,研究网络体系结构,损失功能,基准数据集和学习策略的设计方面的相关研究。此外,我们在包括室内和室外数据集(包括室内和室外数据集)上进行了三个广泛使用基准测试的模型性能进行定量比较。最后,我们讨论了先前作品的挑战,并为读者提供一些有关未来研究方向的见解。
translated by 谷歌翻译